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Abstract

Families and sequences of zero-crossing counts generated by parametric time
invariant linear filters are studied. The focus is on the family of zero-crossing
counts {D 0 ) generated by the parametric family of filters

C', = 1 + aB8 + a2 1 2 + ... , a E (-1,1)

where 8 is the backward shift. In the case of a stationary Gaussian pro-
cess, the expected zero-crossing rate indexed by a E (-1, 1), is always de-
creasing, completely determines the correlation generating function, and is
equal to a constant if and only if the process is a pure sinusoid with prob-
ability one. When the process is a sinusoid plus white noise, a sequence
{E[D,,,],j = 1,2,.. .} is constructed that after proper normalization con-
verges to the frequency of the sinusoid regardless of the signal to noise ratio.
A real data example is given in tracking the vocal sound of a megaptera no-
vaeangliae whale.
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0.1 Introduction

' When a time series is filtered, the effect of the filter can be described by
counting the resulting number of zero-crossings. By extension, we can apply
to a time series a family of filters and obtain the corresponding family of
zero-crossing counts. The resulting family of counts is referred to as higher
order crossings or HOC. Thus, HOC are zero-crossing counts observed in a
time series and in its filtered versions. The main application of HOC is in the
description of the oscillation observed in oscillatory time series. Moreover,
in the special case of stationary Gaussian time series there are quite a few
HOC families and also HOC sequences that determine the spectrum up to a
constant. -

HOC sequences obtained by repeated differencing have been studied in
a sequence of papers beginning with Kedem and Slud (1981, 1982) and re-
viewed in Kedem(1986). Such HOC are called simple. In this paper we go
a step further by introducing the notion of HOC families and sequences ob-
tained from parametric time invariant linear filters. The emphasis though is
on the useful HOC family obtained from the parametric family of filters

4(Z)t = Z, + aZ, + a2Z,_ 2 +... (0.1)

where a E (-1, 1). It is convenient to refer to this filter as the a-filter. It
is recognized to be the operation of exponential smoothing. In the Gaussian
case, the family of expected HOC obtained by this filter in an a-neighborhood
that contains the origin is equivalent to the correlation generating function.
Furthermore, the family of expected HOC for a E (-1,1) is always monotone,
a fact that standardizes the application of such HOC in model identification
and discrimination between Lime series. Furthermore, this HOC family con-
tains HOC sequences indexed by aj, j = 1, 2,..-, that are useful in discrete
spectrum estimation in the presence of noise. This is demonstrated in the
case of a single frequency when the noise is white Gaussian noise.

In the sequel, by "stationary" we mean both strict, and wide sense simul-
taneously unless we specify an appropriate adjective.

f~-The paper is organized as follows. In section 2 we define and also give
examples of HOC from parametric families of linear filters. We outline there
our motivation for studying HOC in connection with oscillatory time series. - -'
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In section 3 we construct an adaptive HOC sequence from (0.1) that converges
to a frequency in the presence of noise. As a matter of fact, the main result
there, Corollary 1, has prompted our interest in pursuing HOC in connection
with parametric linear operations. In section 4 we obtain more results about
the HOC family from (0.1). Our main result there is the connection between
the zero-crossing rate, as a function of the parameter, and the correlation
generating function under the Gaussian assumption. In section 5 we analyze
a vocal sound time series of a megaptera novaeangliae (humpback) whale. c

0.2 Parametric Families of Zero-Crossing Counts

The mathematical formulation of the idea behind HOC can be outlined in
four steps as follows.
1. We start with a time series observed in discrete time

{Zt}, t = 0, ±1, ±2,...

2. Let
{Co(.), 0 E 0}

be a parametric family of filters indexed by 0. The parameter space 0 may
be an interval or a countable set in one or more dimensions. That is, 0 may
be a vec.or.
3. Fix 0 E 0 and let Do be the number of zero-crossings in discrete time
(defined precisely below) observed in the time series

CO(Z)1, 4C(z) 2 ,..., ICO( N

of length N from the filtered process

{4(z),}, t = 0, ±1, ±2,...

4. The corresponding HOC family is given by

{Do,O EO0

We note that this formulation is somewhat more general in scope than
the one given previously in Kedem(1986) and allows for various extensions.
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The emphasis in the present paper is on putting together zero-crossing counts
and parametric linear time invariant filters to produce useful HOC sequences
and families. In general, HOC sequences and families contain a great deal
of spectral information, and serve as potent features in discrimination and
classification. In a more abstract sense, HOC families constitute a combina-
torial domain that in many respects is equivalent to the spectral domain and
yet this domain has many interesting distinctive features of its own.

Before proceeding with some examples, we must define precisely what
is meant by zero-crossing counts in discrete time. For this purpose it is
convenient to introduce the family of binary time series:

Xt() 1, if CO(Z), > 0
X,(O) = 0, if 4O(Z), < 0

t = 0, ±1, ±2,.• . The number of zero-crossings in 12(Z)1 , 1Co(Z) 2, .. , CO(Z)N

is defined as the number of symbol changes in X 1(0),-. ,XN(0)

N

Do = Z-[X((0)- X,-_(0)]:
t=2

When, for some 0, £o(.) corresponds to the identity filter then De is the
number of zero-crossings in the original unfiltered series Z1 ,' " ., ZN. We can
see that Do depends on N and that this dependence is more apparent in the
zero-crossing rate defined by

Do
N() ---N - 1

But, clearly, the expected rate

(0) -E[D

need not' depend on N as is the case for a strictly stationary process. In
studying HOC families, at times we let 9 change while holding N fixed and
at other times 0 is fixed but N changes.

0.2.1 Examples of Parametric HOC Families

(1). HOC from differences.
Let 7 be the difference operator defined by

VZ, -Z, - Zt I

3



and define
Le VE1 -,O E {1,2,3,...}

with L, =V ° being the identity filter. The corresponding hOC sequence

D, D2, D3," • •

gives the simple HOC. When Zj is a zero-mean stationary Gaussian process
with spectral distribution function F(w) then, by virtue of the well known
arcsine-law (e.g. David (1953)), the simple HOC obtained by repeated dif-
ferencing admit the spectral representation (Kedem(1986))

p() = cos[r(O)] cos(w)(in(w2))2 (- 1)dF(w) (02)
f,(sin(w/2))2 ( 1 )dF(w)

where pi (0) is the first-order correlation in the filtered process {1e(Z)j }. The
sequence -y(O) is bounded and monotone increasing in 0 so that

7r-y(O) - w*, 0 - oo (0.3)

where w" is the highest frequency in the spectral support. We shall provide
a proof of this fact later. When -y(l) = -y(2 ) then Zt is a pure sinusoid and
7r-y(O) is a constant equal to the frequency of the sinusoid (Kedem(1984)).

It should be noted that in the Gaussian case the left hand side of (0.2),

P1(0) = cos[ry(O)], holds in general for any filtered process {£2e(Z),}. This
"cosine-formula" is known to hold also for processes whose finite dimensional
distributions are spherically symmetric of which the Gaussian distribution is
a special case (He and Kedem (1988)). The formula is of fundamental im-
portance in the study of HOC, and finding a similar formula for stationary
processes whose finite dimensional distributions are not spherically symmet-
ric is a challanging and intriguing problem.

(2). HOC from repeated summation.
Let 5 be the shift operator defined by

BZt = ZI-1

and define
e = (1 + B)e- ' , 9 E {1,2,3,..}

4



The corresponding HOC are called HOC from repeated summation and tho
sequence {D8 } is monotone decreasing in 0, and in the Gaussian case

7rY(O) - U., 0 -. o (0.4)

where w. is the lowest frequency in the spectral support of F(w). This can
be shown using the spectral representation

cos[jry(0)] = cos(w)(1 + cos(w))(e-)dF(w) (0.5)
f:.(1 + cos(w))(1- dF(w)

From (0.3) and (0.4) we can determine all the frequencies and their number
in a stationary Gaussian process with a purely discrete spectrum. First, from
(0.4), we obtain the lowest frequency by repeated summation. Then, from
(0.3), we obtain the highest frequency and filter it out, the second highest
and filter it out, aid so on until there is a single frequency left in which case
it must be the lowest one that we already know, and we stop (Kedem(1986)).

(3). HOC from exponential smoothing.
We can rewrite (0.1) more compactly as follows. Let

Z,(a) =_ E"(Z),

Then (0.1) becomes

Zt(a) = aZ,_,(a) + Z,, a E (-1,1) (0.6)

The corresponding HOC family {Da}, a E (-1,1) is the main subject of the
present paper. When {Zt} is a zero mean stationary Gaussian process then,
as we shall see, -(a) is monotone decreasing, and we obtain the spectral
representation

COS[7-t(C)] = f '" cos(w)IH(w; a) 2dF(w)

f, IJH(w;a) 2dF(w,)

where

jH~~aj' Ct' E (-III), WC 1017r] (0.8)
H(~~) 2 = 2acos(w)
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In that case we show that y(a) is equivalent to the normalized spectrum. In
general, however, this equivalence need not hold and -t(a) may contain some
extra useful information. This point is brought up again later in a real data
example where we apply both the spectral density and ",N(O) in the analysis
of vocal sound of a humpback whale.

(4). HOC from autoregressive moving averages operations.
A more general family of parametric filters, and one that contains the previ-
ous examples as special cases, is defined by the autoregressive-moving average
operation

Y - a, It-.... aY-p = Z - b Z . bqZtq (0.9)

where now
D9 = V. D,a 2 ,...,b1,b 2 ,...

Not much is known at present about the HOC {Do) of this general case,
except for some results of a general nature given below.

0.2.2 HOC-plots from a process with adjoined random
variables.

To illustrate the ability of HOC to summarize and describe the oscillation in
time series, it is instructive to consider some special cases while exploiting
the strong graphical appeal inherent in HOC. For this purpose we consider
a zero-mean non-Gaussian stationary process efined a-s follows. Let

T1, T2, To, • •

be a sequence of IID random variables from a geometric distribution with
parameter p, and let

U, U2, U3,-

be a sequence of independent standard normal random variables. Consider
the stationary process {Zt} defined by:

Zi = U1, I<I<T,

Zt = U2, I<t<T2

6



Zt= L 3, T2 <t<T 3

The process {Zi) is called a process with adjoined random variables. Its
behavior is determined by the parameter p. Figure 1 shows realizations of the
process corresponding to p = 0.10,0.25,0.50,0.75. The corresponding nor-
malized HOC plots of -YN(') from simple HOC and HOC obtained from the
a-fiiter (0.1) are given in Figure 2. The figures also contain the normalized
HOC 7N(') from white Gaussian ;joise for the sake of comparison. We see
that simple HOC increase while the HOC from the a-filter decrease as they
should. The reason for this displayed monotonicity is that the gain functions
of these parametric linear filters are themselves monotone. See Theorem 2
below.
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Figure 1. Realizations from processes with adjoined random

variables with p=0.1, 0.25, 0.5, 0.75.
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Figure 2. Plots of normalized HO0C. (a) Simple 11OC. (b) 11OC
from the a-filter.
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0.2.3 Why HOC?

There is a close association between the autocorrelation function pk and
HOC. As remarked earlier, in the Gaussian case, there are llOC families
that are equivalent to the autocorrelation. For example, knowledge of the
sequence of expected HOC from differencing E[Dj] is equivalent to knowing
Pk in the sense that each sequence completely determines the other. Thus it
seems tempting to say, at least when facing that equivalence, that the close
association between HOC and pk eliminates the need for IIOC. The truth,
however, is that HOC sequences and families have certain inherent advan-
tages over the autocorrelation that warrant their study. Here are some.

(1). Resistance to outliers.
In the presence of extreme values, the sample auotocorrelation may resemble
the auotocorrelation of white noise. This can easily be seen when a time
series contains a single large outlier. In this case the sample auotocorrelation
tends to zero. The zero-crossing count from the unfiltered original data how-
ever is left intact. The same also holds after decimation when only subseries
(e.g. Z1, Z3, Z 5,...) are considered.

(2). Relation to the spectral support.
The normalized quantity

, E[De]

takes values in the interval [0, 7r]. It is therefore easy to relate it directly
to specific frequency bands and discrete frequencies in the spectral support.
When 0 corresponds to a highpass (lowpass) filter, rrT(O) moves to the right
(left) so that by varying 0 intelligently we can force or "push" 7r'y(9) to land
on any desired frequency. Important special cases of this fact were already
seen earlier in (0.3),(0.4), and are seen again later in Theorem I and its
corollary.

It is interesting to observe that the point 7r-(O) can be moved along the
spectral support by adding sinusoidal components at will. Hligh (low) fre-
quency components with sufficient power can cause 7, (O) to move to the
right (left) as is the case with hijhpass (lowpass) filtering.

(3). Exceeding autocorrelation information.
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For non-Gaussian processes {Do, 0 E EI may contain more information than
the autocorrelation. As alluded to earlier, a clear indication of this fact is
given in our data example in section 5. In general, {Do, 0 E 0) may be inter-
preted as yet another type of "spectrum" that relates directly to oscillation.
In this respect irDe/(N - 1), where 0 corresponds to the identity operation,
may be viewed as the basic "period" of the process.

(4). Graphical information.
HOC sequences and families convey a great deal of graphical information that
can be related to the general appearance of time series. For example, simple
HOC from differencing D1, D2, D3,..., pertain to zero-crossings, peaks and
troughs, inflection points, ... , respectively. In this connection it is worth
noting that if Di - D,+1 for low order j, then there is good chance the data
contains a marked sinusoidal component.

(5). Lack of moments.
A strictly stationary process may not possess moments of any order so that
the usual definition of autocorrelation and spectrum does not apply. HOC,
however, adapt easily to this situation because

( rDo
ryN(O)- N - 1

possesses all moments. Thus HOC can provide a first hand feel of the oscil-
lation regardless of the existence of moments.

(6). Lack of stationarity.
A non stationary process may still generate very regular oscillation despite
of its overall time dependent behavior. When this is the case, the zero-
crossing :ate is a quantity to be reckoned with. An example is furnished by
a nonstationary AR(2) with two unit roots exp(±(). The process is both
explosive and also very oscillatory, but its oscillation is essentially the same
as that of a pure sinusoid, It has been shown in le and Kedem (1989b) that

7rD,
l.i.m'N 1 = (, O 5_ r

where D, is the number of zero-crossings in the observed unfiltered time se-
ries. Note that this is an example where 0 = 1 is fixed while N changes.

11



0.3 Detection of a single frequency in noise.

The ideas expressed above can be illustrated very well by considering the
problem of detecting a single frequency in the presence of white Gaussian
noise using the a-filter. We shall construct an expected HOC sequence that,
under the Gaussian assumption, converges to the frequency regardless of the
magnitude of the noise variance. For this purpose we generalize a result of
He and Kedem (1989a).

First we need

Lemma 1. Let IH(w; a)12 be given by (0.8), and let p be a positive integer.
For

0 < W < W2 <.. < Wp < 7r

and for positive constatnts
2 2 2

define the convex combination

(a) = =, III(.'; aI)-o1(w,) (0.10)
E j~ IH(w,; 0)12

Then (a) is monotone increasing for a E (-1,1).

Proof: For al,a2 E (-1, 1) suppose a, :5 a2, and define

akI = JH(wk; ai) 21H(w,; (Y2)

for k,1,- 1,... p. To show that (0 2 ) - (0) _ 0 it is sufficient to show
that for any choice of k < 1, alk - akI 0 where wk - L,%, or equivalently,
cos(wk) _ cos(wj). The numerator of alk - akl is equal to

2(cos(Wk) - COS(WI))(I - ala2 )(02 - al ) ? 0

The corresponding denominator is always positive, and the lemma is proved.
0

Consider now the mixed spectrum stationary Gaussian process

P
z, = Z(Acos(wi) + 1 ,si,(,,t)) + , (0.11)

12



where the A's and B's are all independent, Aj, Bi - N(0, o-), and {} is
white Gaussian noise with mean 0 and variance o,,, independent of the A's
and B's. As before 0 < w, < w2 < ... < w < r. We have

Theorem 1. Consider the harmonic process (0.11) and choose an arbitrary
constant ao E (-1, 1). Define the sequence

7r E[D,,,]
Cf+l = cos(LN - 1) (0.12)

Then as j -+ 00

aj --- a

where a* is a fixed point solution of the equation

(& )a "(0.13)

and wl<7E[Do.]< ,
N N-1 <-W P

Proof: Let IH(w;a)12 be given by (0.8). The Gaussian assumption implies
that

cos( rE[D,], fg cos(w)IH(w; a)12dF(w) (0.14)
-N-- - fo JH(w;a)j2dF(w)

where T(w) is the spectral distribution function of {Zt}. Define

W( L) = J IH(w;a)12dW (0.15)

Then from (12),(14),(15) it follows that for k = 0,1,2,-.-

ak f l(k) + WB(ak)ak (.6k = 1 + W(ak) (0.16)

In deriving (0.16) it helps to observe that

I IIH(w;a)12d - _

13



and
and fcos(w)H(w;r)dw= 1-

Observe that Ck+l is a convex combination and that it must fall between Ok

and (ak). Suppose a0 :5 f(ao). Then

ao <a :! -a()

But (a) is monotone increasing so that

o :5 a, 5 (ai)

Similarly, whenever a, < aj+l _< (a,+1 ) then

aj+1 !5 aj+ 2 < (aj+ 2)

and so {aj} is a monotone seqience. But for a E (-1, 1)

cos(w,) < c() < COS(WI)

and therefore {a.} is also bounded. It follows that {ja,} converges to a., say.
Then from (0.16)

(a.) + W(a.)a. (0.17)1 + W(a.)

or that
a. & a(.)

Conversely, suppose a0 > (a0). Then by a similar argument there exists an
a.. such that a, - a.. and

a.. -(.)

It follows that as j 0o, a, - &, where a' = (a*) for some

a* E (cos(wp), (cos(w,))

or equivalently
7E[D ,] rE[D,,.]

N-i N-1
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0

For the case p 1 we obtain the result of He and Kedcrn (1989a).

Corollary 1. Suppose p = 1. Then regardless of the signal to noise ratio,

rEfDa ]
N'- I - w 1 , j-*0 (0.18)

Proof: Here wP = w1. 0l

Table 1 shows some examples of the convergence in (0.18) using simulated
data of a single sinusoid plus noise. In applications -y(a) is replaced by "YN(G),
a consistent estimate under the model at hand. Evidently, for reasonable
signal to noise ratio the algorithm converges rather fast. Observe that no
Fourier type analysis has been used, and that w, need not be a Fourier
frequency of the form 27rk/N.

15



Table 1. Convergence of towards w, = 0.8 with N = i0000
where the signal to noise ratio (SNR) is given in dB.

1dB 0dB -1.94dB -6.02dB -10dB
ao=-.1 ao=.9 ao=.2 ao=.5 o= .1

0.8848 0.5194 0.9127 0.9291 1.3381
0.8006 0.5904 0.8222 0.8713 1.2294
0.7987 0.6563 0.8015 0.8411 1.1251
0.7987 0.7142 0.7965 O.8191 1.0371
0.7987 0.7600 0.7952 0.8053 0.9617
0.7987 0.7864 0.7952 0.8015 0.9077
0.7987 0.8002 0.7952 0.7990 0.8756
0.7987 0.8065 0.7952 0.7984 0.8511
0.7987 0.8065 0.7952 0.7977 0.8449
0.7987 0.8065 0.7952 0.7971 0.8436
0.7987 0.8065 0.7952 0.7971 0.8423
0.7987 0.8065 0.7952 0.7971 0.8405
0.7987 0.8065 0.7952 0.7971 0.8392
0.7987 0.8065 0.7952 0.7971 0.8379
0.7987 0.8065 0.7952 0.7971 0.8361
0.7987 0.8065 0.7952 0.7971 0.8335
0.7987 0.8065 0.7952 0.7971 0.8323
0.7987 0.8065 0.7952 0.7971 0.8310
0.7987 0.8065 0.7952 0.7971 0.8298
0.7987 0.8065 0.7952 0.7971 0.8310
0.7987 0.8065 0.7952 0.7971 0.8298

Note: SNR = 20logo d..,,ol dB
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0.4 The HOC from the a-filter

In the previous section we were concerned with an important special case
of spectrum analysis. It was shown that the HOC family from the a-fifter
contains a sequence that (after proper normalization) converges to a discrete
frequency amidst white noise. This fact emboldens us to believe that the
HOC from the a-family contains considerably more spectral information.
That this is indeed the case is shown in the present section. It is shown that
in the Gaussian case the HOC family from the a-filter completely determines
the correlation generating function of the original unfiltered process.

0.4.1 Preliminary results on linear filtering

Let {Zt), = 0, ±1, ±2.-., be a zero mean stationary process with autoco-
variance Rk, autocorrelation Pk, and generalized spectral density f(w) that
contains 3-functions correspinding to the points of jump in the spectral dis-
tribution function. Let L, be a parametric family of linear time invariant
filters with impulse response {h,(a))_- and transfer function II(w; a) where

H(w;a) E FT(h,(a)) = exp(-inw)hn(a) (0.19)
n

Wherever applicable, we always make the regularity assumptions that h,(o)
is absolutely summable in n and that

J 7 [I(w; a)f(w)dw < oo (0.20)

We define the filtered process indexed by a as before

Z,(n) - Co(Z), E h,,(a)Z, (0.21)

In other words

Z,(a) - hi(o) 0 Z, (0.22)

where 0 denotes convolution. Denote the autocovariance and autocorrelation
of {Zt(a)} by Rk(a), and pk(cr), respectively.

The next result shows how to compute the autocorrelation of {Z,(a)}
from Pk . The result is well known but it is brought hcre for completeness.

17



Lemma 2. Let J,, be a time invariant linear filter, indexed by a, whose im-
pulse response {9,(a)j}' 0 is given by the convolution

9n(cr) = h,,(a) 0 h-, (a)

Then

PP(a) = (0.23)P"( - J(p) 0

and
00

)= gn(a) + E(gn+,(a) + g.-,())p,, (0.24)
t=1

n = 0, ±1, ±2,. (0.25)

Proof: Observe that

FVT(J (R)n) = FT(g,,(a)0Rn) = .Y'T(h,(a)0h_,(C)0P)= JJ(w; a)H(w;0')2rf(w0)

By taking the inverse Fourier transform we obtain

J,(R)n= Jexp(inw)tH(w;;a)12f(w)dw R(a)

Therefore
a R&(o) _ J.(R)n = R0J.(p)n

Ro(a) J.(R)o RoJ,(p)o

An important consequence of the application of a linear filter is that the
autocorrelation is altered. In particular if in addition the gain function is
monotone increasing (decreasing) the process becomes more (less) oscilla-
tory and the correlation between neighboring points decreases (increases).
Intuitively this is what one expects of highpass (lowpass) filtering, but in
the case of monotone gains this intuition becomes factual as shown in the
following theorem.
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Theorem 2. Suppose the squared gain function IH(w)f 2 is monotone increas-
ing in [C, 7r]. Denote by pi(H) the first-order correlation in the filtered pro-
cess. Then

p1 i pi(H) (0.26)

When the gain is monotone decreasing the inequality is reversed.

Proof: The proof makes use of properties of stochastic ordering. Define for
A E [0, 7r] the probability distribution functions,

(A) fo f(w)dw
fo f (w)dw

and
fx JH(w)12f(w)dwPH (A) = fo JH(,,)12 f(w) dw

Suppose IH(w)l2 is monotone increasing. Then

P(A)-FH(A)

fo IH(w)12f(w)dw fox f(w)dw - fo f(w)dw foA III(w)12f(o)d w
fo f(w,)dw fo IH(w)IIf(w)dw

f\ IH(w)12 f(w)dofo\ f (w)dw - f\ f (w)dw fo" I H(w)12 f(w)dw
fo f(w)dw fo IH(w)IIf(w)dw

> IH(A)II fA f(uw)dw fo f(w)dw - IH(A) 2  f(w)dw fo f(w)dw

fo f(w)dw fo IH(w)I2f(u))dw
=0

and therefore for all A E [0, 7r]

P(A) > F,(A) (0.27)

Thus, if X, Y are two random variables such that

X'PH, Y~P

then X is stochastically larger than Y and this means that

E[g(X)] > E[g(Y)]
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for every increasing function g defined on [0, 7r] (Marshall and Olkin (1979)).
In particular, for the increasing function

g(W) = 1 - cos(w), 0 < w < r

we obtain,

1 -jcos (w) dFH(w) 1-jcos (w) dF(w)

But this means that pi(H) !5 P1.
In the same way we can also prove the reversed inequality when the gain

is monotone decreasing. 0

Corollary 2. Suppose {Zt) is Gaussian. Then the simple expected HOC
{E[Dj]} from repeated differencing are monotone increasing,

E[Dj] <_ E[D+1 ], j = 1,2,3,.-. (0.28)

and

irED , w (0.29)
N-i

where w* < r is the highest frequency in the spectral support.

Proof: (0.28) follows because of (0.2) and the fact that the squared gaill
of the difference operator is equal to

2(1 -cos(w))

and is seen to be increasing in [0, tr]. Thus the simple expected HOC are
monotone increasing. To prove (0.29) observe that the normalized expected
HOC are also bounded:

0 < rE[DI < 7,-N-l-

and therefore must converge. Also note that the spectral measure of {(VjZ), },
denoted by vj(.), is given by

sin;'(w/2)dF(w)
v' ) f f,sin" (A/2)dF(A)
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where F is the spectral distribution function of {Z,}. It follows that (0.2)
can be written more compactly as

cosr E [D + ']  ff

Cos( -N ) - ,7 cos(w)v,,(dL)

But from Kedem and Slud (1982) v,(.) converges weakly,

1 1Vi = b-,. + -b , J &--0
S2 2

where b,, is the unit point mass at u. Therefore as j - 00

7rE[D)+II)
c O.s( N TD -- 0 cos(w)

and use the fact that cos(x), x E [0, ir] is monotone. 0

Remark 1: A direct combinatorial way to obtain (0.28) is to note that for
any strictly stationary process the inequality

S(3*) _< "f(j + 0) +

always holds, and then letting N -- oc. (0.28) follows because (j) is inde-
pendent of N.

A slightly more involved result gives a condition under which the fir.t
order correlation pi(c), viewed as a function of a E A C R',

p,: A [-1,1]

is monotone.

Corollary 3. Consider the parametric family of filters {a(), a E A}, and
assume t",at for each a E A ,£,(-) has a well defined inverse - Suppose
that fora<#, a, E A,

21t(w; 0)12
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is monotone decreasing in w E [0, 7r]. Then

P,(a) -. p,(I)

If in addition {Z,} is Gaussian then also

E[D,] _ E[DO]

The inequalities are reversed when G(w;a,/i) is monotone increasing in
wE [0, 7r'.

Proof: Operate on {Zg(a)} with oC-,(.). the squared gain of this sequential
filter is G(w; a,#) which is assumed to be monotone decreasing. Therefore
by Theorem 2 ,

pi (a) < pi(G)

where p,(G) is the first order correlation in the filtered process

£L-o"Co(Z), = Lo(Z), = ZI(P)

Therefore p, (G) = p (/3 ) and

p,(a) < p1(G) = pi()

In the Gaussian case this entails,

,rE[DJ ArE[DO]

p(a)=Ncos( N- I )Npi()=co.( - i

and since cos(x) is monotone decreasing in [0, 7] we obtain

irEjD,] > rE[OD]

N-I - N-I

The coaverse can be proved similarly.
0
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0.4.2 Determining the correlation generating function
from HOC

In this section we specialize to the parametric family

,,(Zhj = Z, + aZi-1 + a a2 Zt 2 +

The transfer function and squared gain are given by, respectively,

1
H(w;) =1 - exp(-w)

and
in(w;a)1 2 _ 1

1 - 2acos(w) + a'

for w E [0, 7r],a E (-1,1). The corresponding impulse response is readily
seen to be

(a a ' , n=0,1,2,..
h(a) ={ 0, otherwise

Therefore, from Lemma 2, the impulse response of Jf() is

- a

and by operating on Pk,

l= nl 1
1- a 2 ± 1 - a 2 =I

Let ¢(a) be the c,rrclation generating function of {Z,),

001:P(n .

n=O

It follows that,

Ja(p)o 2 - 2= (° ) - I]

and and) = 0¢(a) + a-'O(a) - a-
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and therefore

P1(a) = (1+a)(a) (0.30),a[20(,a)- 1] 1 ' l < 1(.e

Solving for 0(a) in terms of Pl(a) we finally have,

Theorem 3. The correlation generating function 0(a) of {Z 1 }, a zero-mean
stationary process, is obtained from pi(a) by the equation

1 -a p,(a)

1 - 2api(a)+a2' JaI<1 (0.31)

If in addition {ZJ is Gaussian, then

1 -acos(iry(a)) 1 - acos(7ry(a))
5(a) = 1 - 2acos(7r7(a))+ a If(();, faf < 1 (0.32)

It follows from (0.32) that in the Gaussian cas-e knowledge of the normalized
expected zero-crossing rate -y(a) is equivalent to knowing the normalized
spectral density

f(w) = f__)
f:, f (A) dA

Corollary 4. Let {Zj}, t = 0, ±1, ±2,..., be a zero mean stationary Gaussian
process. For aJ < 1 and w E 10, 7r], the following equivalent relations hold:

-0,) "= O(, ) = P,(a ) t== f.)

-y(a) is a new tool in time series analysis motivated by the equivalence
relations in Corollary 4. The data example in the next section provides some
insight necessary for judging the usefulness of this device. As examples, we
consider some special cases.
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Example 1: Gaussian white noise.
For Iaj < 1,

Pi (a) = a(.3

y(a) = -cos'(a) (0.34)7r"

and

0(a) 1 (0.35)

Given any process, we find it very helpful in applications to compare ts
zero-crossing rate -(a) with that of white noise given in (0.34). See Figures
3,4.

Example 2: First order autoregressive process
Consider a stationary Gaussian AR(1) process with parameter a1,

Z= a,Z,_1 + , t = 0, ±1,...

where Jail < 1, and {t} is Gaussian white noise. For lal < 1,

pI(a) = a a1  (0.36)
1 + aia

y~) 1 _: +ai
=-cos ( ) (0.37)

and

O(a) = 1 - I1a (0.38)

Figure 3 gives the graphs of -(a) for a, = -. 6,. ,0,.. ,0.6. The casc
a, = 0 corresponds to white noise and is given for reference.

Example 3: Sum of sinusoids plus white noise.
Consider the mixed spectrum process (0.11). For lol < 1,

_F COO(W') +

pi() - - (0.39)
EI -2acos + 1

1
Y(a) = -cos-'(p1 (a)) (0.40)
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and
p a2(1-°¢°.(w, ))+ .

j=1 o + 02

0(a) =,) ((0.41)

Figure 4 gives the graphs of -y(a) in the case of p = 1 for several values of the
frequency wi when the signal to noise ratio is 20dB (very little noise). The
figure also gives the zero-crossing rate of white noise for comparison. Near
the origin the graph of 1(a) is close to a horizontal line as is expected in
light of our next result.

As a function of a E (-1,1), -(a) is always monotone decreasing, a fact
th-At makes it useful in comparing different processes. When the process is a
pure sinusoid, -y(a) is a constant. In the Gaussian case the converse is also
true.

Theorem 4. Let {Zt}, t = 0, +1, ±2,..., be a zero mean stationary Gaussian
process. Then

(a) 7(a) is monotone decreasing in a E (-1,1).
(b) t(ct) is constant if and only if {Zj} a pure sinusoid with probability one.

Proof: To prove (a) we apply Corollary 3 to
1

I - 2acos(w) + o 2

We show that for -1 <a < f < I

G(W;, IH(w;3)1 _ 1 -2acos(w) + a2

IH(w;a)1' 1 - 20cos(w) + 12

is monotone decreasing. So, for 0 < wi _ w2 5 7r the numerator of the
difference

G(W2; a, 1 G(wi; a,3)
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is equal to
2(cos(wi) - cos(w2))(1 - afl)(a - 3) < 0

and (a) follows.

To prove (b), if {Zt} is a pure sinusoid with frequency w1 , then from
(0.39),

p1(a) = cos(wI) = coS(WrY(a))

or for all jal < 1,

7r

and 7(a) is constant on (-1, 1). Conversely, if -y(a) is constant for a!l a E
(-1, 1), then there exists w, E [0, r] such that

y(a) =
7r

for all a E (-1, 1). Thus, from (0.32) we havc,

1 - acos(r-Y(a)) 1 - acos(w,)
I - 2acos(x-r(a)) + a2  I -2cycos(wi) + Cr2

But this is the correlation generating function of a pure sinusoid. To complete
the proof, note that

I

P, = 0'(0) = cos(w 1 ) P2 = 0€"(0) = cos(2w,)
2

Therefore,

z1 E[Z,- 2p, Z,_, + Z,_-]2 = 2(1 - 2p2 + P2) = 0

Var IZj]E I

so that with probability one {Zt) satisfies the stochastic difference equation

Zt - 2p1ZtI + Zj_ 2 = 0

whose solution is a sinusoid with frequency wi.
0
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Remark 2. We can improve statement (b) in Theorem 4 by rioting that if
for some al, a2 E (-1, 1),

-y(a) = -y(a2), -1 a a, < 0 < a2 < 1 (0.42)

then by monotonicity ',(a) is constant in the interval [lai,a 2] that contains
the origin. Because O(a) is analytic at a = 0, the same argument as in
the above proof shows that {Zt) must then be a sinusoid under this weaker
condition. Thus (b) can be replaced by the stronger statement that {Z}
is a pure sinusoid with probability one if and only if (0.42) holds for some
- < a, < 0 < C2 < 1. Compare with Kedem(1984).

28



Figure 3. Graphs of -y(a) from AR(1) with parameter a,
-0.6, -0.5,-**-,0,0.1,---,0.6. a, = 0 corresponds to white noise.

Graph of Ganunaja) for Ai~ 1 a-O-1-2-3-4-.,.

Graph of Gama(a) for ARI.a-O 2..4,.g

0..6-
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Figure 4. Plots of -y(a) from a single sinusoid plus white noise;
SNR=2OdB. The plots correspond to frequency w, 0.057r, 0. 157r, ..
The intersecting curve is the zero-crossing rate of white noise.

GAMM~'A FOR S+N at w*Pi-w-.5,.15.......95;SNR-2O

'-1-0.5 0.5
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0.5 -yN(O) as a descriptive-diagnostic tool

Given a parametric family of filters {£e()}, there are several ways to ap-
ply the corresponding observed zero-crossing rate 7yjv(0). We describe two
procedures and then apply them to real data.

0.5.1 Two useful procedures

(A). HOC-plots.
In this procedure, 7YN(0) is plotted as a function of 0 E 0 as a descriptive de-
vice that summarizes the data very much like the estimated spectral density.

When £(') = V - 1, then for sufficiently large N, IW(O) is increasing as
a function of 0 = 1, 2,.... Experience shows that the initial rate of increase
is a useful discriminator.

When C, = E'oaj'W, YN(a) tends to decrease for a E (-1,1). From
the Gaussian case we already know that attention should be given to YN(a)

for a-values near the origin.
In any application, it is helpful to include also the plot of -y(0) from a

known process, usually Gaussian white noise, for reference as done in Figures
1,2.

If a certain hypothesis is entertained, we can test it by observing whether
the HOC plot from the data falls within certain probability bands. The
probability limits can be obtained from the asymptotic normality of YN(O)

when it holds. A surprisingly good approximation to the variance of 7YN(O)
under the Gaussian assumption is given for each fixed 0 by the formula

(Kedem(1987)):

Var[7N( )J 1 (0.43)

Y(0)(1 - ^1( + ) - t(0) 1 27(0)(1 - -y(O))(v(O) - y(O))

N -i N -I (I -v(O))(N - 1)

where
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V (0) [1 - ()1 - (u(0) - Y(O))N - ] (0.44)
- (O) I - (o)

1 - 2AI(G) + A2 (0) (0.4)2(1- AM

and

A(O) 7 -sin- p,(O), n = 1,2,... (0.46)

Observe that y(O) = 1 - A1(0). In this connection we have.

Theorem 5. Assume that {Zj} is Gaussian white noise and consider 7N(a)
from the a-filter. Then for each fixed a E (-1,1) as N -- o,

IN(a) - -Y (a) ), ( 0 , 1 )
/Var['YN(a)]

Proof: Follows easily by noting that {Zt} is Gaussian, DG is a sum of indi-
cators, and that pn (a) = a 1, n = 0, ±1,....
0

Thus, under the hypothesis of Gaussian white noise, for each fixed a E (-1,1)
we can find an approximate probability interval that contains -YN(a) using
(0.43).

(B). Deviation from white noise.
Measuring the deviation of the observed HOC from the expected HOC of
Gaussian white noise, is a recommended procedure. A successful application
of this idea has been reported in Dickstein et al.(1989) in discriminating be-
tween ultrasound echo signatures obtained from bonded aluminum specimens
that underwent different surface treatment prior to bonding. To measure de-
viation from white noise, Dickstein et al. used the 0' statistic discussed in
Kedem and Slud(1982), but using observed rather than expected HOC from
white noise.

Another variation, is to construct HOC-grams from

^IN(0) - -yv(0), 0 E 0 (0.47)
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where 7yw(O) is the expected zero-crossing rate of Gaussian white noise. Bly
applying (0.47) to different stretches of the data each of length N, we obtaine
an image in two-dimensional time x 0 space called HOC-gram. When the
a-filter is used, the HOC-grams are obtained from

-IN(a) - -Cos'(a), (-1,1) (0.48)
7r

Many other variations are possible.

0.5.2 Tracking the vocal sound of a humpback whale

The vocal sound of cetaceans is a subject of interest to marine biologists
who consider the sound of these animals as a feature of their adaptation to
aquatic existence (Schevill and Watkins (1962).) Tracking and identification
of distinctive whistle patterns of whales and porpoises is thus an important
element of the research on cetaceans. The actual business of recording sound
at sea presents some difficulties because of ambient sea noise due in part to
machinary on board ships and to the movement of waves against bodies such
as ship hulls. In what follows we apply HOC analysis to a vocal sound series
uttered by a humpback whale in ambient sea noise. The series was recorded
45 miles east of Boston. More information about the series and the recording
device can be found in Schevill and Watkins (1962).

The series consists of 3 seconds worth of data sampled at the rate of
20 KHz, and recorded with 12 bit resolution in the form of integers in the
range 0 - 4095. Because we are interested in tracking as well as identifica-
tion, the data were partitioned into stretches of 0.1 second containing 2048
observations each.

Figure 5 was obtained from the stretch of data ending at 0.2 seconds. The
figure shows plots of the observed zero-crossing rate ')N( 9 ) from simple HOC
and HOC from the a- filter. As explained above, the figure contains also
95% probability limits and -y(O) from Gaussian white noise for reference and
for measuring the similarity to white noise. Observe that -y(O) is between the
probability limits by construction. The hypothesis of white noise is obviously
rejected, as is well expected, by both types of HOC, but the HOC from the
a-filter are more informative because they point to the possibility that the
data may follow a low-order AR process. This is seen by comparison with
Figure 3. It is interesting to note that the simple observed HOC behave very
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much like the expected simple HOC from white noise for higher differences,
while the observed HOC from the a-filter exhibit a similar phenomenon for
values of a, roughly, greater than 0.4. That is to say, in this sense some parts
of HOC-plots are more informative than others.

Figure 6 portrays the same analysis applied to the stretch of data ending
with 0.5 seconds. The data now show greater similarity to white noise as
seen from both HOC plots (a),(b), but the hypothesis of white noise is still
rejected. We conclude that the signal is less powerful than the previous one.

Figure 7 shows a marked deviation from white noise and the presence of
a powerful signal in the stretch of data ending at 1.4 seconds. The signal
is not sinusoidal because with that much power we would expect from the
simple HOC that YN(l) ; 1N(2 ). But since this obviously is not the case,
a sinusoidal component is ruled out. However, by comparing the HOC-plot
corresponding to the a-filter with the HOC-plots in Figure 3 we see that a
low-order AR sound component is a very reasonable model for this stretch
of data. This example shows that the HOC plots from the a-filter and from
repeated differencing complement each other. Both are useful in applications.

Next we obtain the HOC-grams (0.48)

7N(Q) -- cos-(a), a E (-1,1)

for 19 a-values, a = -0.9,-0.8,..-,0,0.,-..-,0.9, and for non-overlaping
stretches of data each corresponding to 0.1 seconds. The a-values are on the
ordinate while the abscissa is the time axis. The values of the HOC-gram are
given in the form of grey levels. Darker levels correspond to more negative
values of 7yN(a) - lcos - (a), while lighter levels correspond to more positive
values. We can see from the HOC-gram given in Figure 8 that the entire
data set contains three distinct pronounced utterances. From Schevill and
Watkins (1962) we know that this is what was in fact expected.

It is interesting to see what, a spectral-gram from the same stretches of
data gives. Figure 9 gives the logspectral- gram obtained from AR-spectral
estimates by fitting to each subseries of 0.1 seconds an AR(20) model. It is
possibie to see correspondence between the HOC-grain and the logspectral-
gram, but the HOC-gram gives a much clearer tracking of the vocal sound
series.
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Figure 5. Plots of -)Aw( 9) and 95% probability limits for the stretch
of whale data ending at 0.2 seconds. (a) Simple HOC. (b) HO0C
from the ak-filter.

RHOCDIF OF 62033-21 AT 0.2 SEC with 95% T-BOUNDS FOJk GWN

C40

0.2+

RHOCAR OF 62033-21 AT 0.2 EC with 951 T-BOUNDS FOR GWN

-0.75 -05 -Q!25 0. 25 C.5 0. 75
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Figure 6. Plots Of m'N(O) and 95% probability limits for the stretch
of whale data ending at U.5 second,-. (a) Simple 110C. (b) 110C
from the ct-filter.

RHOCDIF OF 62033-21 AT 0.5 SEC with 95% T-AOUNDS FOP GWN

0.10

RHOCAR OF C2033-21 AT 0.5 SEC with 95% T-BOUNDS FOR GWN
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Figure 7. Plots of-yp%'($) and 95% probability limits for the stretch
of whale data ending at 1.4 seconds. (a) Simple HOC. (b) HOC
from the o-filter.

RHOODIF OF 62033-21 AT 1.4 SEC with 95% T-bO1JNDS FOR GKN

RHOCAR OF~ 62033-21 AT 1.4 ECwith 95% T-BOUNDS FOR GWN

0. 6-(

0. 4

-
- - - - - --------
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Figure 8. HOC-gram from a vocal sound of a humpback whale.

a~l O. 1DENSITY PLOT OF RHOCAR(62033-21)

5 10 15 20 25 30

38



Figure 9. logspectral-gram from a vocal sound of a humpback
wh. I e

XO. 1SPECTROGRAM (AR(2O)) OF 62033-21

100 200 300 400 500
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Captions of Figures and Tables

Figure 1. Realizations from processes with adjoined random vari-
ables with p=0.1, 0.25, 0.5, 0.75.

Figure 2. Plots of normalized HOC. (a) Simple HOC. (b) HOC
from the a-filter.

Figure 3. Graphs of -y(a) from AR(1) with parameter a, =

-0.6,-0.5,-..,0,0.1,...,0.6. a, = 0 corresponds to white noise.

Figure 4. Plots of -f(a) from a single sinusoid plus white noise;
SNR=20dB. The plots correspond to frequency wL = 0.057r, 0.157r,. , 0.95 r.
The intersecting curve is the zero-crossing rate of white noise.

Figure 5. Plots of 'yN(O) and 95% probability limits for the stretch
of whale data ending at 0.2 seconds. (a) Simple HOC. (b) HOC
from the a-filter.

Figure 6. Plots of -yN(0) and 95% probability limits for the stretch
of whale data ending at 0.5 seconds. (a) Simple HOC. (b) HOC
from the a-filter.

Figure 7. Plots of-yN(O) and 95% probability limits for the stretch
of whale data ending at 1.4 seconds. (a) Simple HOC. (b) HOC
from the a-filter.

Figure 8. HOC-gram from a vocal sound of a humpback whale.

Figure 9. logspectral-gram from a vocal sound of a humpback
whale.
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|rD0
Table 1. Convergence of . towards w, = 0.8 with N = 10000

where the signal to noise ratio (SNR) is given in dB.
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